
Properties
of

Context-Free Languages

An easy way to prove a bunch of properties of Context-Free
languages is through the idea of a substitution. Let S be a finite
alphabet and suppose that for each letter a in S we have a language
S(a). If w=a1...an is a string in S* we can say that S(w) is the
concatenation S(a1)...S(an). If L is a language over S we say that
𝑆 𝐿 = 𝑤∈𝐿ڂ 𝑆(𝑤)

For example, if we let S={0,1} and S(0)={anbn | n>= 1} and
S(1) = {an | n>=1} then S(001) = {anbnambmak | n,m,k >= 1}

Theorem: If L is a context-free language over S and S(a) is context-
free for each a in S, then S(L) is context-free.
Proof: Start with the grammars for each S(a) and rewrite them so
they have no nonterminal symbols in common. Take a Chomsky
Normal Form grammar for L and rewrite it so it has no nonterminal
symbols in common with any of the S(a) grammars. Each grammar
rule for L has either the form A => BC or A => a. Replace each A => a
rule by A => Start(a), where Start(a) is the start symbol for the S(a)
grammar. This gives a context free grammar for S(L). (Two simple
inductions show that this grammar derives w if and only if w is in
S(L).

Theorem: If languages L1 and L2 are context-free then so are
L1∪L2, L1L2 and (L1)*.
Proof: Let S be {0,1}, let S(0)=L1 and let S(1)=L2. Then

a) {0,1} is context-free, and S({0,1}) = L1∪L2.
b) {01}) is context-free, and S({01}) = L1L2

c) 0* is context-free and S(0*) = (L1)*.

However, note that context-free languages are not closed under
intersection.

Example: Let L1={0n1n2j | n,j >= 0} and let L2 ={0k1m2m | k,m >= 0}
These are both context-free languages but L1∩L2= {0n1n2n | n>= 0}
and this is not context-free.

Note that this tells us that complements and differences of context-
free languages are not necessarily context-free, for if they were
intersections would also be context-free.

Theorem: If L is context-free and R is regular, then L∩R is context-
free.
Proof: Start with a PDA that accepts L by final state and a DFA that
accepts R. Make a new PDA whose states are pairs of states from L
and R. If L has transition d(q,a,X)=(q',y) and R has transition d(r,a)=r'
then make transition for the new PDA d((q,r),a,X)=((q',r'),Y). The final
states of the new PDA are {(q,r) | q is final for L and r is final for R}
This new PDA accepts string w if and only if w is accepted by both L
and R.

Why can't we do this with 2 PDAs?

Theorem: If L is context-free and R is regular then L-R is context-
free.
Proof: L-R = L∩Rc and Rc is regular.

Theorem: If L is context-free then Lrev is also context-free.
Proof: Start with a Chomsky Normal Form grammar for L. Replace
any rule A => BC with the rule A => CB. An induction on the length of
derivations shows that this is a grammar for Lrev.

See example next slide

For example, a grammar for {anbm| n>0, m >= 0} is
A => AB | AA | a
B => BB | b

The grammar
A => BA | AA | a
B => BB | b

creates the language {bmaa| n>0, m >= 0}

Here is an example of a language that is pumpable but not context-
free. This is just a variation of the language that was pumpable in
the regular sense but not regular:
L = {aibjckdl | i,j,k,l>= 0 and if i=1 then j=k=l}

First, if L was context-free then, since ab*c*d* represents a regular
language, the intersection L ∩ ab*c*d* = {abjcjdj | j>= 0} would also
have to be context-free, which it clearly isn't.

(continued next slide)

Second, note that L is the union of three languages:
L0={bjckdl | j,k,l >= 0} = b*c*d*
L1 ={abjcjdj | j,k,l >= 0}
L2={aibjckdl | i >=2, j,k,l >= 0} = a2a*b*c*d*

Note that L0 and L2 are regular, so they are certainly pumpable. L1 is
not pumpable in itself, but if we take any string z in L1, such as
z= abjcjdj we can let u=e, v=a, w=x=e, y=bjcjdj. Then z=uvwxy and
uvnwxny = anbjcjdj.is an elements of L for every n. So every long string
in L can be pumped; the pumping constant for L is the longer of the
constants for L0 and L2.

Decision Algorithms for Context-Free Languages:

We can determine if a given string w is in a given context-free
language: convert the grammar to CNF and generate all possible parse
trees of height |w|-1. Since a binary tree of height n has at least n+1
leaves, this will find all strings in the language of length |w| or less.

We can determine if a context-free language is empty or infinite;
these are homework questions.

Most other questions regarding context-free languages are
undecidable, including:

• Are two context-free languages the same?
• Is the intersection of two context-free languages empty?
• Is a context-free language S*?
• Is a given grammar ambiguous?
• Is a given language inherently ambiguous?

